Twisted Traces and Positive Forms on Generalized q-Weyl Algebras

نویسندگان

چکیده

Let ${\mathcal A}$ be a generalized $q$-Weyl algebra, it is generated by $u$, $v$, $Z$, $Z^{-1}$ with relations $ZuZ^{-1}=q^2u$, $ZvZ^{-1}=q^{-2}v$, $uv=P\big(q^{-1}Z\big)$, $vu=P(qZ)$, where $P$ Laurent polynomial. A Hermitian form $(\cdot,\cdot)$ on called invariant if $(Za,b)=\big(a,bZ^{-1}\big)$, $(ua,b)=(a,sbv)$, $(va,b)=\big(a,s^{-1}bu\big)$ for some $s\in {\mathbb C}$ $|s|=1$ and all $a,b\in {\mathcal A}$. In this paper we classify positive definite forms algebras.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally Finite Simple Weight Modules over Twisted Generalized Weyl Algebras

We present methods and explicit formulas for describing simple weight modules over twisted generalized Weyl algebras. When a certain commutative subalgebra is finitely generated over an algebraically closed field we obtain a classification of a class of locally finite simple weight modules as those induced from simple modules over a subalgebra isomorphic to a tensor product of noncommutative to...

متن کامل

Automorphisms and Twisted Forms of Generalized Witt Lie Algebras

We prove that the automorphisms of the generalized Witt Lie algebras W(m , n) over arbitrary commutative rings of characteristic p > 3 all come from automorphisms of the algebras on which they are defined as derivations. By descent theory, this result then implies that if a Lie algebra over a field becomes isomorphic to W{m, n) over the algebraic closure, it is a derivation algebra of the type ...

متن کامل

Weyl Modules for the Twisted Loop Algebras

The notion of a Weyl module, previously defined for the untwisted affine algebras, is extended here to the twisted affine algebras. We describe an identification of the Weyl modules for the twisted affine algebras with suitably chosen Weyl modules for the untwisted affine algebras. This identification allows us to use known results in the untwisted case to compute the dimensions and characters ...

متن کامل

q-rook monoid algebras, Hecke algebras, and Schur-Weyl duality

When we were at the beginnings of our careers Sergei’s support helped us to believe in our work. He generously encouraged us to publish our results on Brauer and Birman-Murakami-Wenzl algebras, results which had in part, or possibly in total, been obtained earlier by Sergei himself. He remains a great inspiration for us, both mathematically and in our memory of his kindness, modesty, generosity...

متن کامل

Generalized Weyl algebras and diskew polynomial rings

The aim of the paper is to extend the class of generalized Weyl algebras to a larger class of rings (they are also called generalized Weyl algebras) that are determined by two ring endomorphisms rather than one as in the case of ‘old’ GWAs. A new class of rings, the diskew polynomial rings, is introduced that is closely related to GWAs (they are GWAs under a mild condition). The, so-called, amb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry Integrability and Geometry-methods and Applications

سال: 2022

ISSN: ['1815-0659']

DOI: https://doi.org/10.3842/sigma.2022.009